Data Transformation in Excel with UNISTAT
The UNISTAT statistics add-in extends Excel with Data Transformation capabilities.
For further information visit UNISTAT User's Guide section 9.3.7. Data Transformation.
Here we provide a sample output from the UNISTAT Excel statistics add-in for data analysis.
Data Transformation
Johnson Transformation: Results
Data variable: cm
Number of Cases: 33
| Z-statistic for best fit | 0.7200 | 
|---|---|
| Gamma | 0.5500 | 
| Delta | 0.6075 | 
| Xi | 5.6319 | 
| Lambda | 6.8365 | 
Transformation selected: Johnson Bounded System (SB)
z = Gamma + Delta * LN((x – Xi) / (Xi + Lambda – x)), Xi < x < Xi + Lambda
z = 0.549976426928764 + 0.607452018062996 * LN((x – 6.83647857110731) / (5.63190833413029 + 6.83647857110731 – x))
Normality Tests
Smaller probabilities indicate non-normality.
| Anderson-Darling Statistic | Probability | |
|---|---|---|
| Original Data | 0.5988 | 0.1105 | 
| Transformed Data | 0.2723 | 0.6477 | 
Transformed Data
| Original Data | Transformed Data | |
|---|---|---|
| 1 | 6.9000 | -2.1675 | 
| 2 | 7.0000 | -1.5821 | 
| 3 | 7.0000 | -1.5821 | 
| 4 | 7.2000 | -1.0741 | 
| 5 | 7.2000 | -1.0741 | 
| 6 | 7.3000 | -0.9149 | 
| 7 | 7.3000 | -0.9149 | 
| 8 | 7.4000 | -0.7843 | 
| 9 | 7.6000 | -0.5754 | 
| 10 | 7.6000 | -0.5754 | 
| 11 | 7.7000 | -0.4880 | 
| 12 | 7.8000 | -0.4086 | 
| 13 | 7.9000 | -0.3354 | 
| 14 | 8.6000 | 0.0728 | 
| 14 | 8.7000 | 0.1222 | 
| 15 | 8.8000 | 0.1703 | 
| 16 | 8.8000 | 0.1703 | 
| 17 | 9.1000 | 0.3085 | 
| 18 | 9.1000 | 0.3085 | 
| 20 | 9.2000 | 0.3531 | 
| 21 | 9.3000 | 0.3971 | 
| 22 | 9.3000 | 0.3971 | 
| 23 | 9.4000 | 0.4408 | 
| 24 | 9.8000 | 0.6137 | 
| 25 | 9.9000 | 0.6571 | 
| 26 | 10.1000 | 0.7447 | 
| 27 | 10.1000 | 0.7447 | 
| 28 | 10.4000 | 0.8804 | 
| 29 | 10.5000 | 0.9273 | 
| 30 | 10.9000 | 1.1283 | 
| 31 | 11.5000 | 1.5048 | 
| 32 | 11.7000 | 1.6709 | 
| 33 | 12.1000 | 2.1654 | 
 
 
 
Data Transformation
Box-Cox Transformation: Results
Data variable: cm
Number of Cases: 33
| Value | Lower 95% | Upper 95% | |
|---|---|---|---|
| Lambda | -0.7406 | * | 1.5260 | 
Box-Cox Transformation: 
y = (y ^ Lambda – 1) / Lambda
y = (POWER(y, -0.740558087800664) – 1) / -0.740558087800664
| Lambda | Chi-Square | DoF | Probability | 
|---|---|---|---|
| -1 | 0.0477 | 1 | 0.8272 | 
| 0 | 0.3982 | 1 | 0.5280 | 
| 1 | 2.2454 | 1 | 0.1340 | 
| Log of Likelihood | -11.9389 | 
|---|
Normality Tests
Smaller probabilities indicate non-normality.
| Anderson-Darling Statistic | Probability | |
|---|---|---|
| Original Data | 0.5988 | 0.1105 | 
| Transformed Data | 0.5901 | 0.1162 | 
Transformed Data
| Original Data | Transformed Data | |
|---|---|---|
| 1 | 6.9000 | 1.0273 | 
| 2 | 7.0000 | 1.0307 | 
| 3 | 7.0000 | 1.0307 | 
| 4 | 7.2000 | 1.0373 | 
| 5 | 7.2000 | 1.0373 | 
| 6 | 7.3000 | 1.0405 | 
| 7 | 7.3000 | 1.0405 | 
| 8 | 7.4000 | 1.0436 | 
| 9 | 7.6000 | 1.0496 | 
| 10 | 7.6000 | 1.0496 | 
| 11 | 7.7000 | 1.0525 | 
| 12 | 7.8000 | 1.0554 | 
| 13 | 7.9000 | 1.0581 | 
| 14 | 8.6000 | 1.0759 | 
| 14 | 8.7000 | 1.0783 | 
| 15 | 8.8000 | 1.0806 | 
| 16 | 8.8000 | 1.0806 | 
| 17 | 9.1000 | 1.0872 | 
| 18 | 9.1000 | 1.0872 | 
| 20 | 9.2000 | 1.0893 | 
| 21 | 9.3000 | 1.0914 | 
| 22 | 9.3000 | 1.0914 | 
| 23 | 9.4000 | 1.0934 | 
| 24 | 9.8000 | 1.1012 | 
| 25 | 9.9000 | 1.1031 | 
| 26 | 10.1000 | 1.1067 | 
| 27 | 10.1000 | 1.1067 | 
| 28 | 10.4000 | 1.1120 | 
| 29 | 10.5000 | 1.1136 | 
| 30 | 10.9000 | 1.1201 | 
| 31 | 11.5000 | 1.1291 | 
| 32 | 11.7000 | 1.1319 | 
| 33 | 12.1000 | 1.1372 | 
 
 
 
					